
Genetic Image Network for Image Classification

Shinichi Shirakawa, Shiro Nakayama, and Tomoharu Nagao

Graduate School of Environment and Information Sciences, Yokohama National
University, 79-7, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan

shirakawa@nlab.sogo1.ynu.ac.jp, shiro@nlab.sogo1.ynu.ac.jp,

nagao@ynu.ac.jp

Abstract. Automatic construction methods for image processing pro-
posed till date approximate adequate image transformation from original
images to their target images using a combination of several known image
processing filters by evolutionary computation techniques. Genetic Im-
age Network (GIN) is a recent automatic construction method for image
processing. The representation of GIN is a network structure. In this pa-
per, we propose a method of automatic construction of image classifiers
based on GIN, designated as Genetic Image Network for Image Classifi-
cation (GIN-IC). The representation of GIN-IC is a feed-forward network
structure. GIN-IC transforms original images to easier-to-classify images
using image transformation nodes, and selects adequate image features
using feature extraction nodes. We apply GIN-IC to test problems in-
volving multi-class categorization of texture images, and show that the
use of image transformation nodes is effective for image classification
problems.

1 Introduction

Various image processing and recognition techniques using evolutionary compu-
tation (EC) have been studied and their effectiveness is demonstrated [1]. The
typical examples are template matching, image filter design, image segmentation,
and image classification. In particular, genetic programming (GP) [2] has been
frequently applied to image classification tasks [3–6]. Tackett primarily applied
GP to solve image classification problems [3]. Parallel Algorithm Discovery and
Orchestration (PADO) [4, 5], a graph-based GP method, was applied to object
recognition problems. Zhang et al. used linear genetic programming (LGP) for
multi-class image classification [6]. The results showed that this approach out-
performs the basic tree-based GP approach. In addition, GP was used to develop
useful texture-feature extraction algorithms [7, 8]. In these studies, the evolved
features are either at par or outperform human-designed features.

In addition, automatic construction methods for image processing have been
proposed [9–13]. They have constructed various types of image processing algo-
rithms automatically. The genetic image network (GIN) is a recent automatic
construction method for image processing [12, 13]. The representation of GIN is
a network structure.



In general, it is difficult to select and extract image features because the
appropriate image features depend on the images of a target problem. In this
paper, we propose a method for automatic construction of image classifiers based
on GIN, the Genetic Image Network for Image Classification (GIN-IC). The rep-
resentation of GIN-IC is a feed-forward network structure. GIN-IC is composed
of image transformation nodes, feature extraction nodes, and arithmetic oper-
ation nodes. GIN-IC transforms the input images to easier-to-classify images
using the image transformation nodes and selects adequate image features using
the feature extraction nodes. We apply GIN-IC to test problems of multi-class
classification of texture images.

The next section of this paper is an overview of several related studies. In
Section 3, we describe our proposed method, GIN-IC. Next, in Section 4, we
apply the proposed method to the problem of texture classification and show
several experimental results. Finally, in Section 5, we describe conclusions and
future work.

2 Related Work

2.1 Genetic Programming and Graph-based Genetic Programming

Genetic Programming (GP) [2], an evolutionary computation technique, was
introduced by Koza. GP evolves computer programs, which are usually tree
structures, and searches for a desired program using a genetic algorithm (GA).
Recently, many extensions and improvements to GP have been proposed. Par-
allel Algorithm Discovery and Orchestration (PADO) [4, 5] is a graph-based GP
rather than a tree structure. PADO was applied to object recognition problems.
Cartesian genetic programming (CGP) [14] was developed from a representation
used for the evolution of digital circuits and it represents a program as a graph.
In CGP, the genotype is an integer string that denotes a list of node connections
and functions. This string is mapped into the phenotype of an index graph.

2.2 Automatic Construction of Image Transformation

In image processing, it is difficult to select filters satisfying the transforma-
tion from original images to their target images. The Automatic Construction of
Tree structural Image Transformation (ACTIT) system [9–11] has been proposed
previously. ACTIT approximates adequate image transformation from original
images to their target images by a combination of several known image pro-
cessing filters. ACTIT constructs tree-structured image processing filters using
GP [2]. The individual in ACTIT is a tree-structured image transformation.
The terminal nodes of a tree are the original images, whereas the non-terminal
nodes are several kinds of image processing filters. A root node represents an
output image. Users provide training images, and the ACTIT system automati-
cally constructs appropriate image processing procedures. 3D-ACTIT [10, 11] is
an extended method that automatically constructs various 3D image process-
ing procedures, and is applied to medical image processing and video image



processing. Recently, two other extensions of ACTIT, Genetic Image Network
(GIN) [12] and Feed Forward Genetic Image Network (FFGIN) [13], have been
proposed. Instead of a tree representation, they are represented by a network
structure. Their biggest difference from ACTIT is the structure of connections
between image processing filters. In general, a network structure theoretically in-
cludes a tree structure (i.e., a network structure also represents a tree structure).
Therefore, the descriptive ability of a network representation is higher than that
of a tree structure. In GIN and FFGIN, a genotype is a string of integers that
indicate image processing filter types and connections. Other studies show that
GIN and FFGIN automatically construct a simple structure for complex image
transformation using their network representation [12, 13].

3 Genetic Image Network for Image Classification
(GIN-IC)

3.1 Overview

The image classifier GIN-IC consists of image transformation, feature extraction,
and arithmetic operation components. The greatest advantage of GIN-IC is its
image transformation (preprocessing) component, which influences image feature
selection. In other words, GIN-IC generates and selects adequate image features
by a combination of nodes.

3.2 Structure of GIN-IC

GIN-IC constructs an acyclic network-structured image classifier automatically.
Figure 1 shows an example of the phenotype (feed-forward network structure)
and genotype (string representing the phenotype) of the proposed method. One
of the benefits of this type of representation is that it allows the implicit reuse
of nodes in its network. The nodes of GIN-IC are categorized into five types:
input nodes, image transformation nodes, feature extraction nodes, arithmetic
operation nodes, and output nodes. Input nodes correspond to original images.
Image transformation nodes execute image transformation using the correspond-
ing well-known image processing filters. We prepare one-input one-output filters
and two-inputs one-output filters in the experiments. Feature extraction nodes
extract an image feature from input images. Arithmetic operation nodes exe-
cute arithmetic operations. Image classification is performed using the values of
output nodes. The image classification procedure in GIN-IC is as follows:

1. Image transformation (preprocessing) of original images
2. Feature extraction from images
3. Arithmetic operation and image classification

In GIN-IC, these processes evolve simultaneously.
In GIN-IC, the feed-forward network structure of nodes is evolved, as shown

in Figure 1. Numbers are allocated to each node beforehand. Increasingly large



Fig. 1. Example of a structure in GIN-IC (phenotype) and the genotype, which denotes
a list of node types and connections.

numbers are allocated, in order, to input nodes, image transformation nodes,
feature extraction nodes, arithmetic operation nodes, and output nodes. Connec-
tions that cannot be executed are restricted at the genotype level; for instance,
the feedback structure is restricted. The nodes take their input from the output
of previous nodes in a feed-forward manner. Furthermore, the image transfor-
mation and feature extraction nodes are connected either with input nodes or
image transformation nodes. The arithmetic operation nodes are connected ei-
ther with the feature extraction nodes or other arithmetic operation nodes; that
is, the connections of nodes obey these data type restrictions, which are based
on the idea of strongly typed genetic programming [15].

To adopt an evolutionary method, GIN-IC uses genotype-phenotype map-
ping. This genotype-phenotype mapping method is similar to Cartesian Genetic
Programming (CGP). The feed-forward network structure is encoded in the form
of a linear string. The genotype in GIN-IC is a fixed length representation and
consists of a string that encodes the node function ID and connections of each
node in the network. However, the number of nodes in the phenotype can vary
in a restricted manner, as not all of the nodes encoded in the genotype have to
be connected. This allows the existence of inactive nodes. In Figure 1, node No.
8 and 11 are inactive nodes.

Because GIN-IC constructs a feed-forward network structured image classifi-
cation procedure, it can represent multiple outputs. Therefore, GIN-IC enables
easy construction of a multi-class image classification procedure using a single
network structure.



3.3 Genetic Operator and Generation Alternation Model

To obtain the optimum structure, an evolutionary method is adopted. The geno-
type of the proposed method is a linear string. Therefore, it is able to use a stan-
dard genetic operator. In this paper, we use mutation as the genetic operator.
The mutation operator affects one individual, as follows:

– Select several genes randomly according to the mutation rate Pm for each
gene.

– Change the selected genes randomly under the constraints of the structure.

We use (1+4) Evolution Strategy ((1+4) ES) as the generation alternation
model. The (1+4) ES procedure in the experiments works as follows:

1. Set generation counter t = 0. Generate an individual randomly as a parent
M .

2. Generate a set of four offsprings, C, by applying the mutation operation to
M .

3. Select the elite individual from the set M +C (the offspring is selected if the
same best fitness with the parent). Then replace M with the elite individuals.

4. Stop if a certain specified condition is satisfied; otherwise, set t = t + 1 and
go to step 2.

Since GIN-IC has inactive nodes, a neutral effect on fitness is caused by genetic
operation (called neutrality [16, 14]). In step 3, the offspring is selected if the
same best fitness with the parent, then the searching point moves even if the
fitness is not improved. Therefore, we believe that efficient search is achieved
though simple generation alternation model. This (1+4) ES is also adopted and
showed the effectiveness in CGP [14] which has feed-forward network structure
as well as GIN-IC.

4 Experiments and Results

In this section, we apply GIN-IC to the problem of multi-class texture classifi-
cation and confirm that using image transformation nodes is effective.

4.1 Settings of the Experiment

In this experiment, we apply GIN-IC to a simple test problem of multi-class
classification of texture images. We use texture images from the publicly available
database VisTex1. We use six classes in this experiment. We make 128 images
with 64×64 pixels each by dividing two texture images of 512×512 pixels for
each class. All images used in the experiment are grayscale images with a size
of 64×64 pixels. The number of training images is 60 (10 images for each class).
The training images used in the experiment are displayed in Figure 2.

1 http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html



Fig. 2. Training images used in the experiment. There are six classes: Bark, Food,
Grass, Metal, Stone, and Fabric.

Table 1. Parameters used in the experiment.

Parameter Value

Generation alternation model (1+4)ES
Number of generations 112500
Mutation rate (Pm) 0.02
Number of image transformation nodes 100 or 0
Number of feature extraction nodes 100
Number of arithmetic operation nodes 100
Number of output nodes 6

To take advantage of the multi-class image classification capabilities of GIN-
IC, we prepared six output nodes, one for each class. The class represented by
the output node with the largest value is considered to be the class of the input
image.

We use the number of correct classifications of training images and the num-
ber of active nodes as a fitness function. The fitness function used in these
experiments is described as follows:

f = Nc +
1

Na

(1)

where Nc is the number of correct classifications of training images, and Na is the
number of active nodes. A higher numerical value indicates better performance. If
the classification performance is the same, the number of active nodes should be



Table 2. Discrimination rate for the test images using obtained classifiers (average
over 10 different runs).

Use image filters Do not use image filters

Bark 70.7 % 53.4%
Food 86.1 % 44.1%
Grass 88.1 % 84.8%
Metal 76.7 % 92.5%
Stone 80.4 % 83.4%
Fabric 94.7 % 92.0%

Average 82.8 % 75.0%

small in this fitness function. We think Nc is more important than Na. However,
a weight coefficient may have to be given to Nc and Na.

The parameters used by the proposed method are shown in Table 1. We
assume that the number of image transformation nodes is either 0 (to verify the
effect of using image transformation nodes) or 100. If the number of the image
transformation nodes is 0, this method resembles classification techniques using
the usual GPs. Results are given for ten different runs with the same parameter
set.

We prepare simple and well-known image processing filters as the image
transformation nodes in the experiment (26 one-input one-output filters and 9
two-input one-output filters), e.g., mean filter, maximum filter, minimum filter,
Sobel filter, Laplacian filter, gamma correction filter, binarization, linear trans-
formation, difference, logical sum, logical prod, and so on. Seventeen simple
statistical values are used as feature extraction nodes, e.g., mean value, stan-
dard deviation, maximum value, minimum value, mode, 3 sigma in rate, 3 sigma
out rate, skewness, kurtosis, and so on. The arithmetic operation nodes are 20
well-known arithmetic operations, e.g., addition, subtraction, multiplication, di-
vision, threshold function, piecewise linear function, sigmoid function, absolute
value, equalities, inequalities, constant value, and so on. GIN-IC is expected to
construct a complex image classifier using a combination of these nodes.

4.2 Results and Discussion

When the number of image transformation nodes was 100, GIN-IC achieved
100% classification accuracy for all training images. However, 100% accuracy in
classifying training images was not obtained when the number of image trans-
formation nodes is 0, suggesting the effectiveness of using image transformation
nodes. We believe that the image transformation nodes change the original im-
ages to images adequate for classification.

Next, we apply the obtained classifiers to test images. Test images (non-
training images that are similar to training images) are not used in the evolu-
tionary process. The number of test images is 708 (118 images for each class).
The average classification performance over ten different runs for the test images



Fig. 3. Example of obtained structure using GIN-IC.

Bark Food Grass

Metal Stone Fabric

Fig. 4. Examples of output images at node A in Figure 3.

are shown in Table 2. The values of Table 2 are discrimination rates for each
class. According to the results, the obtained classifiers affect test images as well
as training images. The result also shows the effectiveness of using image trans-
formation nodes. In particular, the discrimination rates of “Bark” and “Food”
improve when image transformation nodes are used. The discrimination rates of
“Metal” and “Stone” are worse on the other hand.

Figure 3 is an example of the obtained structure (feed-forward network-
structured image classifiers) constructed by GIN-IC. GIN-IC constructs the
structure using the image transformation nodes in its network. Examples of out-
put images at node A are shown in Figure 4. From these output images, GIN-IC
transforms the original images to other types of images and also transforms the
features of the images. This shows that GIN-IC automatically constructs image



Table 3. Confusion matrix and discrimination rates using the structure of Figure 3
for the test images. Each column of the matrix represents a predicted class, while each
row represents an actual class. Each class has 118 test images.

Bark Food Grass Metal Stone Fabric Discrimination rate

Bark 94 0 0 13 11 0 79.7%
Food 1 116 0 0 0 1 98.3%
Grass 8 0 97 12 1 0 82.2%
Metal 0 0 0 110 8 0 93.2%
Stone 0 0 0 1 117 0 99.2%
Fabric 0 0 0 0 13 105 90.0%

Average discrimination rate 90.4%

transformation and feature extraction components through learning. Moreover,
node A connects to the output node of “Food” and the output image of “Food”
is characteristic of other class images.

Table 3 shows the confusion matrix and discrimination rates using the struc-
ture of Figure 3 for the test images. This classifier achieves a discrimination rate
greater than 90%. We can observe that the classifier tends to mistake the “Bark”
class for either the “Metal” or “Stone” class.

In the experiments, we only use simple statistical values as image features. We
consider that the classification performance improves if the appropriate texture
features are prepared.

5 Conclusions and Future Work

In this paper, we propose a new method for automatic construction of an im-
age classifier that evolves feed-forward network structured image classification
programs. The image classifier of the proposed method consists of image transfor-
mation, feature extraction, and arithmetic operation components. The greatest
advantage of the proposed method is the presence of the image transformation
(preprocessing) component. We applied the proposed method to the problem
of texture classification and confirmed that it obtained the optimum solution.
From the experimental results, the obtained classifier is effective in texture clas-
sification. We are, however, recognizing that GIN-IC should be compared with
other classifiers in order to evaluate the quality of GIN-IC. In future work, we
will apply the proposed method to other problems of image classification and
object recognition, particularly to larger problems and other types of problems.
Moreover, we will introduce the use of images’ color information for classification.

References

1. Cagnoni, S., Lutton, E., Olague, G., eds.: Genetic and Evolutionary Computation
for Image Processing and Analysis. Volume 8 of EURASIP Book Series on Signal
Processing and Communications. Hindawi Publishing Corporation (2007)



2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

3. Tackett, W.A.: Genetic programming for feature discovery and image discrimina-
tion. In: Proceedings of the 5th International Conference on Genetic Algorithms
(ICGA-93), Morgan Kaufmann (1993) 303–309

4. Teller, A., Veloso, M.: Algorithm evolution for face recognition: What makes a
picture difficult. In: International Conference on Evolutionary Computation, Perth,
Australia, IEEE Press (1995) 608–613

5. Teller, A., Veloso, M.: PADO: A new learning architecture for object recognition.
In Ikeuchi, K., Veloso, M., eds.: Symbolic Visual Learning. Oxford University Press
(1996) 81–116

6. Zhang, M., Fogelberg, C.G.: Genetic programming for image recognition: An LGP
approach. In: Applications of Evolutionary Computing, EvoWorkshops2007. Vol-
ume 4448 of LNCS., Valencia, Spain, Springer Verlag (2007) 340–350

7. Lam, B., Ciesielski, V.: Discovery of human-competitive image texture feature
extraction programs using genetic programming. In: Proceedings of Genetic and
Evolutionary Computation Conference (GECCO-2004), Part II. Volume 3103 of
LNCS., Seattle, WA, USA, Springer-Verlag (2004) 1114–1125

8. Aurnhammer, M.: Evolving texture features by genetic programming. In: Appli-
cations of Evolutionary Computing, EvoWorkshops2007. Volume 4448 of LNCS.,
Valencia, Spain, Springer Verlag (2007) 351–358

9. Aoki, S., Nagao, T.: Automatic construction of tree-structural image transfor-
mation using genetic programming. In: Proceedings of the 1999 International
Conference on Image Processing (ICIP-99). Volume 1., Kobe, Japan, IEEE (1999)
529–533

10. Nakano, Y., Nagao, T.: 3D medical image processing using 3D-ACTIT; automatic
construction of tree-structural image transformation. In: Proceedings of the In-
ternational Workshop on Advanced Image Technology (IWAIT-2004), Singapore
(2004) 529–533

11. Nakano, Y., Nagao, T.: Automatic construction of moving object segmentation
from video images using 3D-ACTIT. In: Proceedings of The 2007 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC 2007), Montreal,
Canada (2007) 1153–1158

12. Shirakawa, S., Nagao, T.: Genetic image network (GIN): Automatically construc-
tion of image processing algorithm. In: Proceedings of the International Workshop
on Advanced Image Technology (IWAIT-2007), Bangkok, Thailand (2007)

13. Shirakawa, S., Nagao, T.: Feed forward genetic image network: Toward efficient
automatic construction of image processing algorithm. In: Advances in Visual
Computing: Proceedings of the 3rd International Symposium on Visual Computing
(ISVC 2007) Part II. Volume 4842 of LNCS., Springer (2007) 287–297

14. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Genetic Program-
ming, Proceedings of EuroGP’2000. Volume 1802 of LNCS., Edinburgh, Springer-
Verlag (2000) 121–132

15. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation
3(2) (1995) 199–230

16. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press (1994)


