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Abstract. Automatic construction method for image classification al-
gorithms have been required. Genetic Image Network for Image Classifi-
cation (GIN-IC) is one of the methods that construct image classification
algorithms automatically, and its effectiveness has already been proven.
In our study, we try to improve the performance of GIN-IC with Ad-
aBoost algorithm using GIN-IC as weak classifiers to complement with
each other. We apply our proposed method to three types of image clas-
sification problems, and show the results in this paper. In our method,
discrimination rates for training images and test images improved in the
experiments compared with the previous method GIN-IC.

1 Introduction

Automatic construction method for image classification algorithms have been re-
quired. In general, image classification algorithms consist of image preprocessing,
feature extraction, and classification process. It is very difficult to construct an
algorithm suitable for all image classification problems. Therefore, a method is
required to construct an image classification algorithm that would automatically
adjust to the target problem is needed. Genetic Image Network for Image Clas-
sification (GIN-IC) [1] is one of the methods that construct image classification
algorithms automatically, and its effectiveness has already been proven. GIN-IC
automatically constructs the adequate classification algorithm (including image
transformation, feature extraction and arithmetic operation components) using
evolutionary computation. The process of GIN-IC is, first, to transform orig-
inal images to easier-to-classify images using image transformation nodes, and
next, to select adequate image features using feature extraction nodes. The great-
est advantage of GIN-IC is its image transformation (preprocessing) component,
which influences image feature selection. However, learning failure or over fitting
of the training images sometimes occurs in the constructed algorithms because
of GIN-IC’s simple output to decide the classification.

In this paper, we extend GIN-IC by adding the AdaBoost algorithm [2].
AdaBoost is one of the greatest general ensemble learning methods to make a
strong classifier, which has higher performance, by combining weak classifiers,



Fig. 1. Example of a structure in Genetic Image Network for Image Classification.

which have lower performance. AdaBoost is applied to various image classi-
fication problems and has shown its effectiveness, such as the face detection
method proposed by Viola and Jones [3]. Moreover, aggregating the classifiers
constructed by genetic programming [4–6], particle swarm optimization [7] or
neural networks [8] has been studied to improve their classification performance.
In our method, a set of output nodes in GIN-IC is treated as a weak classifier.
The performance is expected to be improved by using GIN-IC as weak classifiers
that complement with each other.

The next section of this paper is an overview of GIN-IC. In section 3, we
describe our proposed method. In section 4, we apply the proposed method to
three kinds of image classification problems and show their results in section 5.
Finally, in section 6, we describe conclusions and future work.

2 Genetic Image Network for Image Classification
(GIN-IC)

2.1 Structure of GIN-IC

The image classifier GIN-IC consists of image transformation, feature extraction,
and arithmetic operation components based on the Genetic Image Network [9].
GIN-IC constructs an acyclic network-structured image classifier automatically.
Fig. 1 shows an example of the phenotype (feed-forward network structure) and
genotype (string representing the phenotype) of GIN-IC.

One of the benefits of this type of representation is that it allows the im-
plicit reuse of nodes in its network. The nodes of GIN-IC are categorized into
five types: input nodes, image transformation nodes, feature extraction nodes,



arithmetic operation nodes, and output nodes. Input nodes correspond to the
original images. Image transformation nodes execute image transformation using
the corresponding well-known image processing filters. Feature extraction nodes
extract an image feature from the input images. Arithmetic operation nodes ex-
ecute arithmetic operations. Image classification is performed using the values
of the output nodes. In GIN-IC, these processes evolve simultaneously.

In GIN-IC, the feed-forward network structure of nodes is evolved, as shown
in Fig. 1. Numbers are allocated to each node, beforehand. Increasingly large
numbers are allocated, in order, to the input nodes, image transformation nodes,
feature extraction nodes, arithmetic operation nodes, and output nodes. Con-
nections, such as the feedback structure, that cannot be executed are restricted
at the genotype level. The nodes take their input from the output of the previous
nodes in a feed-forward manner. Because GIN-IC constructs a feed-forward net-
work structured image classification procedure, it can represent multiple outputs.
Therefore, GIN-IC enables easy construction of a multiclass image classification
procedure using a single network structure.

To adopt an evolutionary method, GIN-IC uses genotype-phenotype map-
ping. This genotype-phenotype mapping method is similar to Cartesian Genetic
Programming (CGP) [10]. The feed-forward network structure is encoded in the
form of a linear string. The genotype in GIN-IC is a fixed length representation
and consists of a string that encodes the node function ID and connections of
each node in the network. However, the number of nodes in the phenotype can
vary in a restricted manner, as not all the nodes encoded in the genotype have
to be connected. This allows the existence of inactive nodes. In Fig. 1, node No.
8 and 11 are inactive nodes.

2.2 Genetic Operator and Generation Alternation Model

To obtain the optimum structure, an evolutionary method is adopted. The geno-
type of GIN-IC is a linear string. Therefore, it is able to use a standard genetic
operator. In GIN-IC, mutation is used as the genetic operator. The mutation
operator affects one individual, as follows:

– Select several genes randomly according to the mutation rate Pm for each
gene.

– Randomly change the selected genes under the structural constraints.

(1 + 4) Evolution Strategy ((1 + 4) ES) is used as the generation alternation
model. The (1 + 4) ES procedure in the experiments works as follows:

1. Set generation counter j = 0. Generate an individual randomly as a parent
M .

2. Generate a set of four offspring C, by applying the mutation operation to
M .

3. Select the elite individual from the set M + C (the offspring is selected if
it has the same best fitness as the parent). Then replace M with the elite
individuals.



4. Stop if a certain specified condition is satisfied; otherwise, set j = j + 1 and
go to step 2.

Since GIN-IC has inactive nodes, a neutral effect on fitness is caused by
genetic operation (called neutrality [10]). In step 3, the offspring is selected if
it has the same best fitness as the parent, then the searching point moves even
if the fitness is not improved. Therefore, efficient search is achieved though a
simple generation alternation model. This (1 + 4) ES was adopted and showed
its effectiveness in previous works [1, 10].

2.3 Advantages and Limitations of GIN-IC

GIN-IC has many advantages to automatically construct image classification
algorithms. The greatest advantage of GIN-IC is its image transformation (pre-
processing) component, which is expected to influence image feature selection.
In other words, GIN-IC generates and selects adequate image features by a com-
bination of nodes. However, learning failure or over fitting of the training images
sometimes occurs in the constructed algorithms because of GIN-IC’s simple out-
put to decide the classification. Moreover, more the size or the number of training
images is increased, more time for learning it takes.

3 Proposed Method

3.1 Overview

To solve the problems noted in previous section, we apply the AdaBoost [2]
algorithm to GIN-IC. A set of output nodes in GIN-IC is treated as a weak
classifier. Thus, the total number of output nodes is N × T , where N is the
number of classes and T is the number of weak classifiers. Weak classifiers are
evolved in sequence until each weak classifier achieves a specified error rate. In
this process, the construction of the previous weak classifiers is fixed and can
be reused in the subsequent weak classifiers. The effective process of other weak
classifiers can be reused. Moreover, reuse is expected to reduce the time required
for learning by avoiding recalculation at each operational node. In addition,
all weak classifiers have a weight of their hypothesis. The final hypothesis is a
weighted vote of the hypothesis of all weak classifiers. Fig. 2 shows an example
of a structure in our proposed method for binary classification.

3.2 Process of the Proposed Method

The process of our proposed method is described as follows:

Step 1: Initialize the weights D1(i) = 1
m , (i = 1, 2, . . . ,m), and weak classifier

counter t = 1, where m is the number of training images.



Fig. 2. Example of a structure in proposed method for binary classification.

Step 2: Focus the tth output set as the tth weak classifier. Here, add the new
usable nodes to save enough nodes for constructing the new weak classifier.
Add ni of image transformation nodes, nf of feature extraction nodes and
na of arithmetic operation nodes.

Step 3: Evolve the weak classifier based on GIN-IC till the error rate εt is less
than a threshold τ . εt is obtained by summing weights Dt(i) corresponding
to misclassified images as

εt =
∑

i:ht(xi) 6=yi

Dt(i), (1)

where ht(xi) is the class label corresponding to the output node with the
largest value of the weak classifier t when the input is image xi, and yi is the
correct class label of image xi. Here, we use (1 + 4) ES as the generation
alternation model. The (1 + 4) ES procedure is the same as in section 2.2.
Do not operate the fixed nodes in step 6 by genetic operation, and allow
these nodes to be selected as the input of other nodes. When constructing
the tth classifier, the structures of the classifiers from first to (t − 1)th can
be reused.

Step 4: Calculate the weight of hypothesis α of the focused output set as

αt =
1
2

log
(

1 − εt

εt

)
. (2)

Step 5: Update the weights as

Dt+1(i) =
Dt(i)
Zt

×
{

exp (−αt) if ht(xi) = yi

exp (αt) otherwise , (3)



where Zt is the number for normalization. This operation adapts the weights
corresponding to the training images based on the AdaBoost algorithm. By
this operation, the weights corresponding to the training images classified
correctly are decreased and the weights corresponding the training images
misclassified by the previous weak classifiers are increased. Therefore, the
misclassified images are classified correctly by the next weak classifier pref-
erentially.

Step 6: Set t = t+1. If t ≤ T , fix the nodes connected with the focused output
set and go back to step 2.

Step 7: Output the final hypothesis hfin(xi) as

hfin(xi) = arg max
yi∈Y

∑
t:ht(xi)=yi

αt. (4)

This operation calculate the final classification results by a vote of all weak
classifiers. For all weak classifiers, sum the weights of hypothesis αt for the
class output by tth weak classifier. The input image xi is classified the class
hfin(xi), which maximizes the sum of the weights of weak classifiers that
output the class.

3.3 Characteristics of the Proposed Method

We note some characteristics of our proposed method in this section. First, the
classifier constructed by our proposed method consists of a number of GIN-IC
as weak classifiers. We think that the performance is improved because weak
classifiers complement with each other compared with GIN-IC. Second, the con-
struction of the previous weak classifiers is fixed and can be reused in the sub-
sequent weak classifiers. Therefore, the effective process of other weak classifiers
can be reused since all nodes may be selected as the input of other nodes. Third,
we stop evolving GIN-IC on the way to use it as weak classifiers. This operation
is expected to reduce the time required for learning and to prevent over fitting.

4 Experiments

4.1 Settings of the Experiment

In this section, we evaluate our proposed method by applying it to three image
classification problems. The problems are as follows:

1. Texture images
2. Pedestrian images
3. Generic object images

In these experiments, we transform all color images into grayscale. We also apply
the previous method, GIN-IC, to the same problems to compare it with our
proposed method. Table 1 shows the parameters used in the proposed method



Table 1. Parameters used in the experiments.

Parameters GIN-IC Proposal

Generation alternation model (1+4)ES (1+4)ES
Mutation rate (Pm) 0.02 0.02
Image transformation nodes (ni) 100 Add 50
Feature extraction nodes (nf) 100 Add 50
Arithmetic operation nodes (na) 100 Add 50
Output nodes 6, 2, 5 6, 2, 5
The number of generations 112500 –
The number of weak classifiers (T ) – 100
Error rate threshold (τ) – 0.4

and the previous method, GIN-IC. We determined each parameter by the results
of preliminary experiments.

We prepare simple and well-known image processing filters as the image
transformation nodes in the experiments (26 one-input, one-output filters and 9
two-input, one-output filters), e.g., mean filter, maximum filter, minimum filter,
Sobel filter, Laplacian filter, gamma correction filter, binarization, linear trans-
formation, difference, logical sum, logical prod, etc. 17 simple statistical values
are used as feature extraction nodes, e.g., mean value, standard deviation, max-
imum value, minimum value, mode, 3 sigma in rate, 3 sigma out rate, skewness,
kurtosis, etc. The arithmetic operation nodes are 20 well-known arithmetic op-
erations, e.g., addition, subtraction, multiplication, division, threshold function,
piecewise linear function, sigmoid function, absolute value, equalities, inequal-
ities, constant value, etc. In both the proposed method and previous method
(GIN-IC), we use the same kinds of nodes. The fitness function of GIN-IC as
weak classifiers in proposed method is described as follows:

fitness = Nc × m +
1

Na
, (5)

where Nc is sum of the weights Dt(i) of training images classified correctly, Na

is the number of active nodes, and m is the number of training images. If the
classification performance is the same, the number of active nodes should be
small in this fitness function. We describe the features of the training images
used in each experiment as follows:

Experiment 1: Texture Images We use texture images from the publicly
available database VisTex.1 We use six classes in this experiment. We make 128
images with 64 × 64 pixels each by dividing two texture images of 512 × 512
pixels for each class. The number of training images is 60 (10 images for each
class). The main feature of these images is that the test images are comparatively

1 http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html



Fig. 3. Training images used in experiment 1 (texture).

Fig. 4. Example images used in experiment 2 (pedestrian).

similar to the training images. The training images used in this experiment are
displayed in Fig. 3.

Experiment 2: Pedestrian Images We use 924 pedestrian images from the
publicly available database MIT Pedestrian Database2 and 200 nonpedestrian
images. We use two classes in this experiment. The size of all images is 64× 128
pixels, and the number of the training images is 200 (100 images for each class).
The pedestrian images have various resolutions while the pedestrians are roughly
the same size. The nonpedestrian images are manually cut out from outdoor
images. An example of the training images used in this experiment is displayed
in Fig. 4.

Experiment 3: Generic Object Images We use 500 generic object images
from the publicly available WANG image database.3 We use five classes in this
experiment. The size of all images is 96×64 or 64×96 pixels, and the number of
2 http://cbcl.mit.edu/software-datasets/PedestrianData.html
3 http://wang.ist.psu.edu/docs/related



Fig. 5. Training images used in experiment 3 (generic object).

Table 2. Discrimination rate for the training and test images (texture).

Training set Test set

Class GIN-IC Proposal GIN-IC Proposal

Average Average Average ± SD Average ± SD

Bark 99.0% 100.0% 70.7 ± 9.2% 91.7 ± 4.0%
Food 100.0% 100.0% 86.1 ± 5.8% 98.4 ± 1.8%
Grass 100.0% 100.0% 88.1 ± 3.2% 85.6 ± 6.5%
Metal 90.0% 100.0% 76.7 ± 16.2% 98.3 ± 1.9%
Stone 99.0% 100.0% 80.4 ± 10.5% 94.9 ± 5.7%
Fabric 100.0% 100.0% 94.7 ± 6.1% 99.4 ± 0.8%

Total 98.0% 100.0% 82.8 ± 8.2% 94.7 ± 1.5%

training images is 50 (10 images for each class). The main feature of these images
is that target objects have various sizes, positions, types, and so on. Therefore,
this problem is more difficult than the other two problems. The training images
used in this experiment are displayed in Fig. 5.

5 Results and Discussion

5.1 Results

We compare our proposed method with GIN-IC in discrimination rate for train-
ing and test images and time required for learning in this section. The results
are the average and the standard deviation (SD) over 10 different runs.

As the result of experiment 1, discrimination rates for the training and test
images of textures are shown in Table 2. Our proposed method achieved 100%
classification accuracy for all training runs against 98% on an average in GIN-IC.



Table 3. Discrimination rate for the training and test images (pedestrian).

Training set Test set

Class GIN-IC Proposal GIN-IC Proposal

Average Average Average ± SD Average ± SD

Pedestrian 89.5% 100.0% 81.4 ± 7.0% 88.6 ± 4.2%
Non-pedestrian 90.5% 100.0% 73.0 ± 10.5% 75.7 ± 4.0%

Total 90.1% 100.0% 80.5 ± 6.1% 87.2 ± 3.7%

Table 4. Discrimination rate for the training and test images (generic object).

Training set Test set

Class GIN-IC Proposal GIN-IC Proposal

Average Average Average ± SD Average ± SD

Building 76.0% 100.0% 34.3 ± 19.5% 62.7 ± 6.9%
Bus 95.0% 100.0% 67.6 ± 12.4% 74.8 ± 7.8%
Elephant 95.0% 100.0% 66.3 ± 10.7% 84.0 ± 5.9%
Flower 100.0% 100.0% 70.9 ± 9.1% 86.4 ± 7.3%
Horse 96.0% 100.0% 56.6 ± 19.5% 73.4 ± 7.9%

Total 92.4% 100.0% 59.1 ± 6.3% 76.3 ± 3.5%

Moreover, the proposed method is about three times faster than GIN-IC, for the
training images. For test images, the proposed method also obtained about 12%
higher classification accuracy as compared to that in GIN-IC totally.

As the result of experiment 2, Table 3 shows discrimination rates for the
training and test images of pedestrians. As for the results of experiment 1, the
proposed method achieved 100% accuracy for all training runs against 90% on
an average in GIN-IC. Moreover, the proposed method is about 50 times faster
than GIN-IC, for the training images. Our proposed method also obtained higher
classification accuracy for test images as compared to GIN-IC totally.

As the result of experiment 3, discrimination rates for the training and test
images of generic objects are shown in Table 4. Similar to the results of exper-
iments 1 and 2, the proposed method achieved 100% classification accuracy for
all training runs against about 92% on an average in GIN-IC. Moreover, the pro-
posed method is about two times faster than GIN-IC, for the training images.
The proposed method also obtained about 20% higher classification accuracy
than GIN-IC totally, for test images.

5.2 Discussion

Our proposed method classified all training images completely in all runs and
tends to prevent over fitting as compared to single GIN-IC in these experiments.
We confirmed that GIN-IC and AdaBoost go well together. Since we use GIN-
IC as weak classifiers, our proposed method can generate and select adequate



Fig. 6. Example of discrimination rate
transition in GIN-IC.

Fig. 7. Relationship between the num-
ber of weak classifiers and the error rate
threshold τ .

image features by a combination of nodes. Although we only use simple image
processing filters and image features as nodes in these experiments, we think that
the performance is improved by adding more complex and effective processes
such as SIFT descriptor [11]. We should investigate how GIN-IC contributes the
performance of our proposed method compared with low level features.

Moreover, our proposed method took lesser time than single GIN-IC, for
learning. We attribute this superiority to using GIN-IC as weak classifiers. An
example of discrimination rate transition in experiment 2 (pedestrian) is shown
in Fig. 6. About 60% classification accuracy is achieved in dozens of generations
and higher accuracy costs hundreds and thousands generations. This graph in-
dicates that error rate threshold τ should be small to reduce the number of
generations to construct weak classifiers. However, too small τ brings a large
number of weak classifiers. The relationship between the number of weak classi-
fiers and τ in pedestrian datasets is shown in Fig. 7. The vertical axis indicates
the number of weak classifiers needed to completely classify the training images,
and the horizontal axis indicates τ . This graph indicates that many weak classi-
fiers are required if τ is small. From this preliminary experiment, we decide the
parameters of τ and T .

6 Conclusions and Future Work

In this paper, we propose a method for automatic construction of an image
classifier that aggregates GIN-IC as weak classifiers based on the AdaBoost al-
gorithm. We applied the proposed method to three different problems of image
classification, and confirmed that it obtained the optimum solution. In our pro-
posed method, discrimination rates for the training and test images improved in
the experiments as compared to that in the previous method GIN-IC. Also, our
proposed method reduces the time required for learning.



However, the classifier obtained by the proposed method is constructed with
2500 nodes under 100 weak classifiers while single GIN-IC is constructed with
30 nodes. We will analyze the process of obtaining classifiers and what kind
of preprocessing and features were evolved by our proposed method in future.
Moreover, this method should be compared with other classifiers to evaluate its
quality. Finally, we will apply it to other problems of image classification and
object recognition with large scale variation and so on.

References

1. S. Shirakawa, S. Nakayama, and T. Nagao: Genetic Image Network for Image Classi-
fication, 11th European Workshop on Evolutionary Computation in Image Analysis
and Signal Processing (EvoIASP 2009), Vol. 5484 of LNCS, pp. 395-404, 2009.

2. Y. Freund and R.E. Schapire: Experiments with a New Boosting Algorithm, Pro-
ceedings of the 13th International Conference on Machine Leaning (ICML-96), pp.
148-156, 1996.

3. P. Viola and M. Jones: Rapid Object Detection using a Boosted Cascade of Simple
Features, Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR 2001), Vol. 1, pp. 511-518, 2001.

4. H. Iba: Bagging, Boosting, and Bloating in Genetic Programming, Proceedings of
the Genetic and Evolutionary Computation Conference 1999 (GECCO 1999), Vol.
2, pp. 1053-1060, 1999.

5. G. Folino, C. Pizzuti, and G. Spezzano: Boosting Technique for Combining Cellular
GP Classifiers, Proceedings of the 7th European Conference on Genetic Program-
ming (EuroGP 2004), Vol. 3003 of LNCS, pp. 47-56, 2004.

6. G. Folino, C. Pizzuti, and G. Spezzano: GP Ensembles for Large-scale Data Classifi-
cation, IEEE Transaction on Evolutionary Computation, Vol. 10, No. 5, pp. 604-616,
2006.

7. A. W. Mohemmed, M. Zhang, M. Johnston: Particle Swarm Optimization Based
Adaboost for Face Detection, Proceedings of the 2009 IEEE Congress on Evolution-
ary Computation, IEEE Press, pp. 2494-2501, 2009.

8. H. Schwenk and Y. Bengio: Boosting Neural Networks, Neural Computation, vol.
12, No. 8, pp. 1869-1887, 2000.

9. S. Shirakawa and T. Nagao: Feed Forward Genetic Image Network: Toward Effi-
cient Automatic Construction of Image Processing Algorithm, Advances in Visual
Computing: Proceedings of the 3rd International Symposium on Visual Computing
(ISVC 2007) Part II, Vol. 4842 of LNCS, pp. 287-297, 2007.

10. J. F. Miller and P. Thomson: Cartesian Genetic Programming, Proceedings of the
3rd European Conference on Genetic Programming (EuroGP 2000), Vol. 1802 of
LNCS, pp. 121-132, 2000.

11. D. G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints, Interna-
tional Journal of Computer Vision (IJCV), Vol. 60, No.2, pp. 91-110, 2004.


