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Abstract. Black-box optimization algorithms, such as evolutionary al-
gorithms, have been recognized as useful tools for real-world applications.
Several efficient probabilistic model-based evolutionary algorithms, such
as the compact genetic algorithm (cGA) and the covariance matrix adap-
tation evolution strategy (CMA-ES), can be regarded as a stochastic
natural gradient ascent on statistical manifolds. Our baseline algorithm
is the adaptive stochastic natural gradient (ASNG) method which au-
tomatically adapts the learning rate based on the signal-to-noise ratio
(SNR) of the approximated natural gradient. ASNG has shown effective-
ness in a practical application, but the convergence speed of ASNG dete-
riorates on objective functions with low effective dimensionality (LED),
where LED means that part of the design variables is ineffective or does
not affect the objective value significantly. In this paper, we propose an
element-wise adjustment method for the approximated natural gradient
based on the element-wise SNR and introduce the proposed adjustment
method into ASNG. The proposed method suppresses the natural gra-
dient elements with the low SNRs, helping to accelerate the learning
rate adaptation in ASNG. We incorporate the proposed method into the
cGA and demonstrate the effectiveness of the proposed method on the
benchmark functions of binary optimization.

Keywords: probabilistic model-based black-box optimization · natural
gradient · low effective dimensionality · learning rate adaptation.

1 Introduction

A lot of problems in real-world applications, such as the simulation-based opti-
mization in engineering and the hyperparameter optimization in machine learn-
ing, are formulated as black-box optimization problems, that is, the gradient of
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the objective function cannot be accessed. The population-based black-box opti-
mization methods, including evolutionary algorithms, have succeeded in a wide
range of applications. In general, the performance of evolutionary algorithms
depends on the choice of the hyperparameter, for example, the population size
and learning rate. Tuning such hyperparameters in real-world applications is
not realistic because the number of function evaluations is usually limited, and
the computational cost for function evaluations is expensive. Therefore, a robust
parameter adaptation mechanism is required in practical situations.

Probabilistic model-based evolutionary algorithms [3,5,6] are promising black-
box optimization methods that define a parametric probability distribution on
the search space and iteratively update the parameters of the distribution to
improve the objective function value of the samples generated from the distri-
bution. Several efficient probabilistic model-based evolutionary algorithms, such
as the compact genetic algorithm (cGA) [6] or the covariance matrix adaptation
evolution strategy (CMA-ES) [5], can be regarded as a stochastic natural gra-
dient ascent on statistical manifolds [9]. In this paper, we focus on the adaptive
stochastic natural gradient (ASNG) method [1] that adapts the learning rate
in the stochastic natural gradient methods such as the cGA. In the black-box
optimization, the natural gradient has to be estimated by the Monte Carlo ap-
proximation. ASNG measures the reliability of the estimated natural gradient
direction by means of the signal-to-noise ratio (SNR) and tries to keep the SNR
around a constant value by controlling the learning rate. The literature [1] shows
that ASNG can achieve an efficient and robust optimization in the problem of a
one-shot neural architecture search for deep learning. However, the convergence
speed of ASNG becomes slow on objective functions with low effective dimen-
sionality (LED), in which part of the variables is ineffective or does not affect
the objective value significantly. Particularly, when redundant variables exist,
the learning rate becomes smaller than necessary because of the low SNR due
to the random walk in the redundant dimensions.

Because LED often appears in high-dimensional problems, including real-
world applications [4,7,8], several works tackling LED exist. REMBO [11] projects
a high dimensional search space into a low dimensional subspace using a random
embedding to solve efficiently high-dimensional problems with LED by Bayesian
optimization. REMEDA [10] applies the same idea to the estimation of distribu-
tion algorithm. However, the random projection does not reflect the landscape
information, and the number of subspace dimensions still remains as a hyperpa-
rameter, which should be carefully chosen depending on the target problems.

In this paper, we propose a method for improving ASNG for objective func-
tions with LED. When optimizing the objective functions with LED by ASNG,
the reliabilities of the elements of the estimated natural gradient differ. Precisely,
the SNR of the estimated natural gradient corresponding to the nonsensitive di-
mensions becomes small. Our idea is to adjust the update direction of the distri-
bution parameters by exploiting the element-wise SNR of the natural gradient.
The proposed method can be regarded as using the element-wise learning rate
in ASNG, that is, the larger learning rate is adopted for the large SNR elements.
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We incorporate the proposed method into ASNG without breaking its theoreti-
cal principal. The experimental results demonstrate that the proposed method,
termed ASNG-LED, works efficiently on binary objective functions with LED.

2 Preliminaries

2.1 Stochastic Natural Gradient for Black-Box Optimization

We consider a black-box objective function f : X → R to be maximized on an
arbitrary search space X . To realize the black-box optimization, we introduce
the technique called stochastic relaxation to transform the original problem into
a differentiable objective function. Note that the following transformation is the
same as the one considered in the information geometric optimization (IGO)
framework [9] and natural evolution strategies [12].

Let us consider a parametric family of probability distributions P = {Pθ :
θ ∈ Θ ⊆ RDθ} on X . The transformed objective function is the expectation of
f under Pθ, that is,

J(θ) :=

∫
x∈X

f(x)pθ(x)dx = EPθ [f(x)] , (1)

where pθ is the density function of Pθ with respect to (w.r.t.) the reference
measure dx on X . For any x, we assume that the log-likelihood ln pθ(x) is differ-
entiable w.r.t. θ, and there exists a sequence of the distributions approaching the
Dirac Delta distribution δx around x. Then, the maximization of J has the same
meaning as the original problem in the sense that supθ∈Θ J(θ) = Eδx∗ [f(x)] =
f(x∗) = supx∈X f(x), where x∗ is the global optimal solution.

In this paper, we focus on the special case, as also assumed in [1], that P is
represented by an exponential family of probability distributions whose density
function is given as pθ(x) = h(x) exp(η(θ)TT (x)− A(θ)), where η : Θ → RDθ is
the normal (canonical) parameter, T : X → RDθ is the sufficient statistics, and
A(θ) is the normalization factor. To make it simple, we assume h(x) = 1, and
the parameter of the distribution is represented by θ = Epθ [T (x)], which is called
the expectation parameter. Then, the natural gradient of the log-likelihood is
given by ∇̃ ln pθ(x) = T (x)− θ, and the inverse of the Fisher information matrix
is F(θ)−1 = Epθ [(T (x) − θ)(T (x) − θ)T]. We note that several known families
of probability distributions, such as the Gaussian distribution and the Bernoulli
distribution, are included in the exponential family and can be represented by
the expectation parameter.

To maximize J , we consider the update of θ in the metric of the Kullback-
Leibler (KL) divergence. Then, the steepest direction is given by the natural gra-
dient direction [2] w.r.t. the Fisher metric defined by F(θ). Because the natural
gradient cannot be obtained analytically in the black-box optimization scenario,
we approximate it by Monte Carlo with independent and identically distributed

(i.i.d.) samples x
(t)
1 · · ·x

(t)
N from Pθ(t) . Moreover, we apply the utility transforma-

tion u(x
(t)
i ) based on the ranking of x

(t)
i w.r.t. f -value. As a result, the estimated
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natural gradient is obtained as

G(θ(t)) =
1

N

N∑
i=1

u(x
(t)
i )(T (x

(t)
i )− θ(t)) . (2)

Introducing the learning rate εθ > 0, the update rule of θ(t) reads

θ(t+1) = θ(t) + εθG(θ(t)) . (3)

2.2 Adaptive Stochastic Natural Gradient (ASNG)

Akimoto et al. [1] developed the adaptive stochastic natural gradient (ASNG)
method by introducing a learning rate adaptation mechanism into the stochastic
natural gradient method using an exponential family of probability distributions
with the expectation parameters. Although the joint optimization of the differ-
entiable and non-differentiable variables is considered in [1], ASNG can apply to
a naive black-box optimization without any modification. Here, we explain the
outline of ASNG in the black-box optimization scenario.

In ASNG, the learning rate is represented by

εθ = δθ/‖G(θ(t))‖F(θ(t)) (4)

The update rule (3) with the learning rate in (4) is similar to the trust region
method under the KL divergence with the trust region radius δθ. The adapta-
tion of δθ in ASNG is based on the theoretical insight of the stochastic natural
gradient method. According to [1, Theorem 4], the monotonic improvement of
J is ensured when it holds

DKL(θ(t+1), θ(t) + εθ∇̃J(θ(t))) ≤ ζDKL(θ(t) + εθ∇̃J(θ(t)), θ(t)) (5)

for some ζ > 0 and if εθ < (ζf(x∗)+J(θ))−1 with some other mild assumptions,
where DKL(θ, θ′) is the KL divergence between Pθ and Pθ′ . ASNG relaxes the
condition for monotonic improvement to the improvement over τ ∝ δ−1θ itera-
tions. If εθ is small enough, it allows the approximation where θ(t) ≈ θ(t+k) and
G(θ(t+k)) is i.i.d. for k = 0, · · · , τ−1. Then, approximation of the KL divergence
with the Fisher metric allows the transformation of the condition in (5) as∥∥∥∥∥

τ−1∑
k=0

εθG(θ(t+k))− εθE[G(θ(t))]√
τ

∥∥∥∥∥
2

F(θ(t))

≤ ζτε2θ‖E[G(θ(t))]‖2F(θ(t)) . (6)

Then, the limitation of τ →∞ in the LHS leads

‖E[G(θ(t))]‖2
F(θ(t))

Tr(Cov[G(θ(t))]F(θ(t)))
≥ 1

ζτ
∈ Ω(δθ) . (7)

The LHS in (7) is the SNR of the estimated natural gradient measured w.r.t
Fisher metric. The above discussion indicates that the SNR should be greater
than a constant value proportional to δθ.
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To estimate the lower bound of the SNR, the following accumulations were
proposed in [1]:

s(t+1) = (1− β)s(t) +
√
β(2− β)F(θ(t))

1
2G(θ(t)) (8)

γ(t+1) = (1− β)2γ(t) + β(2− β)‖G(θ(t))‖2F(θ(t)) , (9)

where s(0) = 0 and γ(0) = 0. Finally, introducing hyperparameters α > 1 and
β ∝ δθ, the adaptation of δθ is written as

δθ ← δθ exp

(
β

(‖s(t+1)‖2
α

− γ(t+1)

))
. (10)

This adaptation tries to maintain ‖s(t+1)‖2/γ(t+1) around α, which makes the
lower bound of the SNR proportional to δθ. Note that the condition in (7) is
satisfied under this design principle.

3 ASNG for Low Effective Dimensionality

ASNG increases the learning rate when the estimated SNR becomes large and
decreases it when the SNR becomes small. We can intuitively regard the SNR
as a measurement of the reliability of the natural gradient direction. If there
are low-effective or redundant variables in the objective function, the variance
of the natural gradient elements corresponding to such variables becomes large,
resulting in the estimated SNR of G(θ(t)) and the learning rate becoming smaller
than necessary. Therefore, the performance of ASNG deteriorates on objective
functions with LED. To prevent this, we propose a natural gradient adjustment
method for ASNG by using the element-wise SNR.

3.1 Estimation of Element-wise SNR

Let us denote i-th element of G(θ(t)) as G
(t)
i for short. By using a one-hot vector

h(i) whose i-th element is one and other elements are zero, we define the SNR

of G
(t)
i on the Fisher metric as follows:

‖E[h(i) ◦G(θ(t))]‖2
F(θ(t))

Tr(Cov[h(i) ◦G(θ(t))]F(θ(t)))
=

(E[G
(t)
i ])2

Var[G
(t)
i ]

. (11)

To estimate the element-wise SNR, we accumulate ŝ(t) and γ̂(t) similar to (8)
and (9) as

ŝ(t+1) = (1− β̂)ŝ(t) +

√
β̂(2− β̂)G(θ(t)) (12)

γ̂(t+1) = (1− β̂)2γ̂(t) + β̂(2− β̂)G(θ(t)) ◦G(θ(t)) , (13)

where β̂ ∈ (0, 1) is a smoothing factor and ◦ means the element-wise product.
When the learning rate εθ is small enough, we can consider θ(t+k) stays around
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the θ(t) for τ ∝ ε−1θ updates after t iterations. Therefore, the expectations of i-th
elements of ŝ(t+1) and γ̂(t+1) are approximated under mild condition as

E[ŝ
(t+1)
i ] ≈

(
τ−1∑
k=0

(1− β̂)k

)√
β̂(2− β̂)E[G

(t)
i ]

τ→∞−→
√

2− β̂
β̂

E[G
(t)
i ] , (14)

E[γ̂
(t+1)
i ] ≈

(
τ−1∑
k=0

(1− β̂)2k

)
β̂(2− β̂)E[(G

(t)
i )2]

τ→∞−→ E[(G
(t)
i )2] . (15)

Moreover, the variance of ŝ
(t+1)
i is approximated under mild condition as

Var[ŝ
(t+1)
i ] ≈

(
τ−1∑
k=0

(1− β̂)2k

)
β̂(2− β̂)Var[G

(t)
i ]

τ→∞−→ Var[G
(t)
i ] . (16)

Therefore, the SNR of the i-th element of G(θ(t)) can be approximated as

(E[G
(t)
i ])2

Var[G
(t)
i ]
≈ E[(ŝ

(t+1)
i )2]/E[γ̂

(t+1)
i ]− 1

2β̂−1 − 1− E[(ŝ
(t+1)
i )2]/E[γ̂

(t+1)
i ]

≈ ξ
(t+1)
i

2β̂−1 − 2− ξ(t+1)
i

(17)

where ξ
(t+1)
i := (ŝ

(t+1)
i )2/γ̂

(t+1)
i − 1.

3.2 Natural Gradient Adjustment Using the Element-wise SNR

The small value of the element-wise SNR estimated by (17) indicates that the
corresponding natural gradient element is unreliable and has a large variance. We
control the element-wise strength of G(θ(t)) using the element-wise estimation
of the SNR; that is, we suppresses the strength of the natural gradient elements
with the low SNRs. Because the denominator in (17) can be approximated by

2β̂−1 when β̂ is significantly small, the estimation of the SNR is approximately

proportional to ξ
(t)
i . Therefore, we employ a Dθ-dimensional adjustment vector

σ(t) using ξ
(t)
i and define σ(t) by the following sigmoid function as

σ
(t)
i =

1

1 + exp
(
−ωξ(t)i

) , (18)

where ω (> 0) is the gain parameter. Then, we adjust the natural gradient
direction by

H(θ(t)) = σ(t) ◦G(θ(t)) . (19)

When we set ω =∞, the sigmoid function coincides with the step function, and
the natural gradient update with H(θ(t)) behaves as a dimensionality reduction
method. We use the adjusted natural gradient H(θ(t)) in the proposed method
instead of G(θ(t)), that is, the natural gradient G(θ(t)) in (3) and (4) is replaced
by H(θ(t)).
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3.3 Combination with ASNG

Let us assume F(θ(t)) is given by a diagonal matrix; for example, the Bernoulli
distribution satisfies this assumption. In such a case, we show the proposed
method can be combined with ASNG without breaking the theoretical principle
described in Section 2.2.

From the condition of monotonic improvement in (5), the search efficiency
of the proposed method with ASNG is guaranteed in a similar way with that
of ASNG. Let us assume β̂ and εθ are sufficiently small so that we can consider
σ(t) and θ(t) stay at the same point for τ ∝ δ−1θ iterations. Then, we consider
the relaxation of (5) in the same way as described in Section 2.2, which is given
by ∥∥∥∥∥

τ−1∑
k=0

εθH(θ(t+k))− εθE[G(θ(t))]√
τ

∥∥∥∥∥
2

F(θ(t))

≤ ζτε2θ‖E[G(θ(t))]‖2F(θ(t)) . (20)

When taking the limit of τ as τ goes to infinity, the LHS in (20) can be trans-
formed and bounded from upper as

ε2θ

Dθ∑
i=1

Fii(θ
(t))

Var[Hi(θ
(t))] +

(
1− σ(t)

i

σ
(t)
i

)2

E[Hi(θ
(t))]2

 (21)

≤ ε2θTr(Cov[H(θ(t))]F(θ(t))) + ε2θ‖E[H(θ(t))]‖2F(θ(t))K(t) , (22)

where K(t) =
∑Dθ
i=1((1− σ(t)

i )/σ
(t)
i )2. Moreover, because σ

(t)
i ≤ 1, we get

‖E[εθH(θ(t))]‖2F(θ(t)) ≤ ‖E[εθG(θ(t))]‖2F(θ(t)) . (23)

As a result, we get the sufficient condition of (20) under the limitation of τ as

‖E[H(θ(t))]‖2
F(θ(t))

Tr(Cov[H(θ(t))]F(θ(t)))
≥ 1

ζτ −K(t)
≥ 1

ζτ
∈ Ω(δθ) , (24)

where we assume τ satisfies τ > K(t)/ζ. We note K(t) can be transformed as

K(t) =

Dθ∑
i=1

(
1− σ(t)

i

σ
(t)
i

)2

=

Dθ∑
i=1

exp

(
−2ω

(
(ŝ

(t)
i )2

γ̂
(t)
i

− 1

))
. (25)

Here, we consider the case that the accumulation of ŝ
(t)
i and γ̂

(t)
i works ideally.

Then, replacing (ŝ
(t)
i )2 and γ̂

(t)
i with their expectations given by (14), (15) and

(16) approximates K(t) as

K(t) ≈
Dθ∑
i=1

exp

(
−4ω(1− β̂)

β̂

(E[G
(t−1)
i ])2

(E[G
(t−1)
i ])2 + Var[G

(t−1)
i ]

)
≤ Dθ . (26)
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Algorithm 1: ASNG-LED

Require: θ(0) {initial distribution parameter}
Require: α = 1.5, δinitθ = 1, N = 2, β̂ = D−1

θ

1: t = 0, ∆ = 1, γ = 0, s = 0, γ̂i = 0, ŝi = 0
2: repeat
3: set δθ = δinitθ /∆ and β = δθ/D

1/2
θ

4: compute Gθ(θ
t) and σ(t) using (2) and (18)

5: set H(θ(t)) = σ(t) ◦G(θ(t))
6: for i = 1 to Dθ do
7: if G

(t)
i 6= 0 then

8: ŝi ← (1− β̂)ŝi +

√
β̂(2− β̂)G

(t)
i /|G(t)

i |
9: γ̂i ← (1− β̂)2γ̂i + β̂(2− β̂)

10: end if
11: end for
12: compute εθ and θ(t+1) by (4) and (3) replacing G(θ(t)) with H(θ(t))

13: s← (1− β)s+
√
β(2− β)F(θ(t))

1
2H(θ(t))/‖H(θ(t))‖F(θ(t))

14: γ ← (1− β)2γ + β(2− β)
15: ∆← ∆ exp(β(γ − ‖s‖2/α))
16: t← t+ 1
17: until termination conditions are met

Thus, we can expect that K(t) becomes not so large and (24) is established when
considering τ > Dθ/ζ. Moreover, we can expect that K(t) becomes small when

β̂ is set as the small value.

Motivated from the above discussion, we modify the accumulation rule in (8)
and (9) by replacing G(θ(t)) with H(θ(t)). Namely, the learning rate adaptation
tries to make the lower bound of the SNR of H(θ(t)) proportional to δθ.

3.4 Implementation of ASNG-LED

Referring to [1], we replace F(θ(t))
1
2H(θ(t)) and ‖H(θ(t))‖2

F(θ(t))
in the accumu-

lations of s(t+1) and γ(t+1) with F(θ(t))
1
2H(θ(t))/‖H(θ(t))‖F(θ(t)) and 1 for the

stable updates. In the same manner, ŝ
(t+1)
i and γ̂

(t+1)
i accumulate G

(t)
i /|G(t)

i |
and 1 instead of G

(t)
i and |G(t)

i |2. Because of this modification, ŝ
(t+1)
i and γ̂

(t+1)
i

are not updated when G
(t)
i = 0. We set the sample size N as two and apply the

ranking-based utility transformation introduced in [1], where u(x
(t)
1 ) = 1 and

u(x
(t)
2 ) = −1 when f(x

(t)
1 ) > f(x

(t)
2 ) (and vice versa), and u(x

(t)
1 ) = u(x

(t)
2 ) = 0

when f(x
(t)
1 ) = f(x

(t)
2 ). This utility transformation can be generalized for an ar-

bitrary sample size as follows: u(x
(t)
i ) = 1 for best dN/4e samples, u(x

(t)
i ) = −1

for worst dN/4e samples and u(x
(t)
i ) = 0 otherwise. The proposed method im-

plemented with ASNG, termed ASNG-LED, is summarized in Algorithm 1.
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Table 1. The benchmark functions used in the experiment. They are D-dimensional
functions of which only d dimensions affect the function value.

Name LeadingOnes OneMax BinVal

Definition
∑d
i=1

∏i
j=1 xj

∑d
i=1 xi

∑d
i=1 2i−1xi

4 Experiment

4.1 Experimental Setting

We evaluate ASNG-LED on several benchmark functions on D-dimensional bi-
nary domain. To simply demonstrate that ASNG-LED works well on functions
with LED, we construct the benchmark functions with LED by injecting the
redundant variables that do not affect the function value at all. The modified
benchmark functions listed in Table 1 have d (≤ D) effective dimensions and
D − d redundant (ineffective) dimensions. The optimal solutions on these func-
tions are given by vectors whose first d elements are given by 1. These functions
become the same as the widely used binary benchmark functions when D = d.
In LeadingOnes, the effective variables change during the optimization. All the
variables of the OneMax function with D = d have an equal contribution to the
objective value, whereas the effects of the variables in BinVal significantly differ
in each dimension. When D > d, these functions have redundant dimensions,
and we particularly expect that ASNG-LED works well in such a situation.

In ASNG-LED, we set the strategy parameters as α = 1.5, β̂ = D−1θ , and
N = 2. The gain parameter in (18) is set to ω = 1. In our preliminary experiment,
we observed that the impact of the setting of ω is not so significant if it is set to
around one. We use the multivariate Bernoulli distribution, whose probability
mass function is defined as pθ(x) =

∏Dθ
i=1 θ

xi
i (1 − θi)

1−xi , where Dθ = D, to
apply ASNG to binary optimization problems. The natural gradient of the log-
likelihood and the Fisher information matrix are given by ∇̃ ln pθ(x) = x − θ
and a diagonal matrix with diagonal elements equal to Fii(θ) = θ−1i (1 − θi)−1,
respectively. We compare the proposed method to ASNG and the cGA. We use
the default parameter setting proposed in [1] and set a sample size of two. The
cGA can be regarded as a stochastic natural gradient with a sample size N = 2,
which is derived by applying the family of Bernoulli distributions to the IGO
framework. In other words, the cGA is an algorithm without the learning rate
adaptation in ASNG. In our experiments, the learning rate of the cGA is fixed
as εθ = D−1. Moreover, we incorporate the margin of D−1 into all methods
as done in [1], i.e., the range of θi is restricted to [D−1, 1 − D−1], to leave the
probability of generating arbitrary binary vectors. We ran 50 independent trials
for each method, where all algorithm settings succeeded in finding an optimal
solution in all trials.
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Fig. 1. Comparison of the optimization time (the number of function evaluations) on
the benchmark functions with redundant dimensions (D = 1000) and without redun-
dant dimensions (D = d). The median values and inter-quartile ranges over 50 trials
are displayed.

4.2 Experimental Result and Discussion

Optimization time: We compare the search efficiency of ASNG-LED and
baseline algorithms on the functions with and without redundant dimensions.
We vary the number of effective dimensions as d = 100, 200, 300, 400, and 500,
while the numbers of dimensions are set as D = d and D = 1000 for each bench-
mark function. We call the former the benchmark functions without redundant
dimensions and the latter the benchmark functions with redundant dimensions.

Figure 1 shows the relation between the number of effective dimensions and
the optimization time, which is the number of iterations needed to find one of
the optimal solutions. We observe that ASNG-LED can reduce the optimization
time on the functions with redundant dimensions compared with ASNG. Also,
the optimization time of ASNG-LED does not increase significantly on the func-
tions with redundant dimensions compared with on the ones without redundant
dimensions. The performance improvement against ASNG is highlighted in the
case of the functions with redundant dimensions. We believe the reason is that
ASNG-LED suppressed the strength of the estimated natural gradient corre-
sponding to the redundant dimensions, allowing the adaptation mechanism for
the learning rate to work effectively.

Focusing on LeadingOnes and BinVal, ASNG-LED outperforms ASNG on
functions both with and without redundant dimensions. This is because part of
the dimensions on these functions does not contribute to the function value sig-
nificantly or at all during the optimization. More precisely, in LeadingOnes, any
element following the first 0 in a binary string does not affect the function value
at all. On BinVal, the weights for each bit are greatly different, and the lower
parts of dimensions do not change the function value significantly. Because of
such properties, ASNG-LED successfully adjusts the natural gradient estimates
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and reduces the undesirable effect of the nonsensitive dimensions for the learning
rate adaptation.

For the results of OneMax without redundant dimensions, we observe that
ASNG-LED requires more optimization time than ASNG. OneMax is a linear
function that has the same weight for each dimension. Therefore, adjusting the
element-wise strength of the update direction does not provide a positive effect
on the learning rate adaptation on OneMax. We note, however, the optimization
time on OneMax is greatly shorter than the one on LeadingOnes and BinVal.
Meanwhile, ASNG-LED performs better on OneMax when there is a large num-
ber of redundant dimensions. This is because the increased number of redundant
dimensions makes the SNR value smaller in the original ASNG, and the perfor-
mance of ASNG is degraded. In contrast, the accumulated value ‖s‖2 for learning
rate adaptation in the proposed method does not become so small because of
the modification of the accumulation rule.

We note that the performances of the cGA differ between the functions with
and without redundant dimensions. This performance difference is caused by
the different learning rate and margin settings of the distribution parameters
described in Section 4.1.

Optimization process on functions with and without redundant di-
mensions: We apply each algorithm to both D = 1000 dimensional benchmark
functions without redundant dimensions (d = D) and ones with d = 500 ef-
fective dimensions. Figure 2 shows the transitions of the normalized optimality
gap φ(t), which is defined as φ(t) := 1 − fbest(t)/fopt, where fopt and fbest(t)
are the function values for an optimal solution and for the best so far solution
at t-th iteration, respectively. From Figure 2, we can observe that ASNG-LED
converges faster than ASNG except for OneMax without redundant dimensions
(D = d = 1000). This implies that the adaptation mechanism of the proposed
method works more efficiently than that of ASNG on the functions with redun-
dant or insignificant dimensions.

To demonstrate how the modification in the proposed method accelerates the
learning rate adaptation, we show the transitions of the trust-region radius δθ on
both OneMax without and with redundant dimensions in Figure 3. We observe
that the transitions of the trust-region radius δθ of ASNG and ASNG-LED are
almost the same in OneMax without redundant dimensions, while δθ of ASNG-
LED is larger than δθ of ASNG in OneMax with redundant dimensions. Because
the exact natural gradient elements corresponding to the redundant dimensions
are zero, the estimates of such elements behave like a random walk. Therefore,
‖s‖2 becomes small against γ if the redundant dimensions exist, resulting in an
unnecessarily small learning rate in ASNG. On the other hand, ASNG-LED tries
to suppress the influence of redundant dimensions on the SNR value to avoid
unnecessarily small learning rate on the adaptation mechanism.
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Fig. 2. Transitions of the optimality gap on the benchmark functions without redun-
dant dimensions (D = d = 1000) and with redundant dimensions (d = 500). The
median values and inter-quartile ranges over 50 trials are displayed.

5 Conclusion

We have proposed a method to improve the performance of ASNG on objective
functions with LED. The proposed ASNG-LED adjusts the estimated natural
gradient based on the elemental-wise SNR estimation. We confirmed the pro-
posed adjustment can be combined with ASNG without breaking the theoretical
aspect. We implemented ASNG-LED by applying the Bernoulli distribution and
evaluated the performance on several benchmark functions on binary domain.
The experimental results showed that ASNG-LED could accelerate the learning
rate adaptation in ASNG and outperform the original ASNG on the functions
with LED. In future work, ASNG-LED with the Gaussian distribution for contin-
uous optimization should be implemented and evaluated. Also, the effectiveness
of ASNG-LED should be verified on more realistic problems such as hyperparam-
eter optimization and feature selection. The limitation of ASNG-LED is that it
assumes the irrelevant directions are aligned with the axes, i.e., the performance
of ASNG-LED will degrade by the rotation of the coordinate system. Making
ASNG-LED rotational invariant is another important future work.
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