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Abstract—In this paper, we design a hierarchical feature
construction method for image classification. Our method has
two feature construction stages: (1) feature construction by a
combination of primitive image processing filters, and (2) feature
construction by evolved filters. We verify the image classification
performance of the proposed method on the MIT urban and
nature scene dataset. The experimental results show that the two-
stage feature construction improves the classification accuracy
compared to single stage feature construction. In addition, the
proposed method outperforms several existing feature construc-
tion methods.

I. INTRODUCTION

Image understanding is an important task in computer vision
because of its broad range of applications, such as image clas-
sification [1] [2] and object recognition [3] [4]. Many state-of-
the-art hand-crafted feature descriptors such as the local binary
pattern (LBP) [5], histogram of oriented gradients (HOG) [6],
scale-invariant feature transform (SIFT) [7], and Gabor bank
[8] have shown good classification performance. Although
these hand-crafted descriptors can show good performance on
certain image types, they may show poor performance on other
types. For instance, LBP works well for texture classification
tasks but may not be a good descriptor for scene classification
tasks. Hence, a domain adaptive feature construction method
is needed.

Deep learning [9] has been used to extract domain adap-
tive features for image classification. The greedy layer-wise
training technique [10], which learns the feature extraction
process in a hierarchical way, has been developed in the
deep learning community. This method has demonstrated that
layer-wise stacking of feature extractors achieves better per-
formance compared to the single layer architecture. Recently,
the multiple-layered architecture (i.e., the deep architecture)
is setting the winning records in image classification compe-
titions [11] [12].

Evolutionary algorithms, especially genetic programming
(GP) [13], have been successfully used to generate domain
adaptive features for image classification. To the best of our
knowledge, there are two major types of studies: studies that
use predefined features as inputs of GP [14] [15], and studies
that use raw pixel values as inputs of GP [16] [17]. In the first
type, the inputs of GP are domain specific or domain inde-
pendent statistical features such as the average intensity of the

central local region and the standard deviation of all pixels of
the image. The second type uses the raw pixel intensity values
as the inputs of GP. In [16], the image transformation program
is evolved by Cartesian Genetic Programming (CGP) [18] [19],
and several statistical moments extracted from the transformed
image are used for inputs to the classifier. Al-Sahaf et al.
[17] have proposed a two-tier approach that uses GP to select
regions of an image and to extract pixel statistics features
from the regions. This approach used simple pixel statistics
from selected regions, which also produced easily interpretable
solutions; a region encloses the eye of a face dataset, which
suggests that the eye pixels are descriptive regions for face
recognition. Shirakawa et al. [20] have proposed a genetic
image network for image classification (GIN-IC). GIN-IC
transforms original images using simple image processing
filters and extracts statistical features from the transformed
images. The GIN-IC evolves the combination of the image
processing filters, the statistical features, and the classifier.
Hirano et al. [21] have also proposed a feature extraction
method using image transformation. These approaches show
that the image transformation based on the combination of
image processing filters is effective for image classification
tasks.

Most GP-based works for evolving feature descriptors select
and combine a predefined set of features based on statistical
moments. In addition, they construct the feature descriptor
by a single evolutionary computation process. Similarly to a
deep learning methodology, a hierarchical architecture must
perform better than a single stage architecture in the GP-based
feature construction methods. In fact, Agapitos et al. [22] have
proposed a way to evolve a hierarchical feature construction
method with GP and shown that the hierarchical architecture
improves the classification accuracy compared to the single
stage architecture. The method has four layers: (1) filter bank
layer; (2) transformation layer; (3) average pooling layer; (4)
classification layer. The filter bank layer is a collection of
random-value filters that are used as kernels in convolution
operations. The transformation layer has one or two feature
extraction stages, which transforms input images into feature
maps with evolved programs by GP. In the pooling layer, an
average operation is performed over local neighborhoods of
a feature map with a window, and the classification layer
is a regularized logistic regression classifier. In this method,
the image transformation is first performed with random-978-1-5090-1897-0/16/$31.00 c⃝2016 IEEE
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Fig. 1. Outline of the proposed method.

value filters. However, the image transformation based on the
combination of image processing filters must perform better
than the image transformation based on random-value filters,
as was reported in [20] [21].

In this paper, we propose a hierarchical feature construction
method based on GP and aim to improve the classification
performance by incorporation of the filter bank in the evo-
lution. The architecture of the proposed method has two
feature construction stages: (1) a transformation of original
images into feature maps based on the combination of image
processing filters, and (2) a transformation of the feature maps
into final feature maps using evolved programs. By converting
2-D final feature maps to 1-D vectors, we obtain the final
feature descriptor. By incorporating the filter bank in the
evolution, we aim to improve the classification performance.
To evaluate the classification performance of the proposed
method, we apply the proposed method on the MIT urban
and nature scene dataset.

The rest of this paper is organized as follows. Section
II describes the proposed method. Section III presents the
experimental setup and results. Section IV concludes and
proposes future works.

II. HIERARCHICAL FEATURE CONSTRUCTION

The outline of the proposed method is shown in Fig. 1. The
multilayer architecture is defined as follows:

1) Filtering layer.
2) Average pooling layer.
3) Transformation layer.
4) Classification layer.

A. Filtering layer

The filtering layer extracts the discriminative features from
the input images using image processing filters. Fig. 2 shows
the structure of the filtering layer and an example of the
phenotype and the genotype. The structure of the layer is
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Fig. 2. Example of the filtering layer and its phenotype and genotype.

a feed-forward network structure that is similar to CGP and
GIN-IC. Each node in the network has one or two connections
to previous nodes or input nodes. The types and connections of
nodes are optimized by the evolutionary algorithm. The nodes
are categorized into input nodes, transformation nodes, and
output nodes. Four input nodes correspond to the red, green,
and blue components of the input RGB image and a gray
scaled image. The transformation nodes execute the image
transformation using the predefined image processing filters
shown in Table I, which transform one or two 2-D images to
a single 2-D image of the same size. The output nodes have
feature maps from the original images through the transforma-
tion nodes. The output nodes pick up the transformed images
by the image filters. We call the transformed output images
feature maps.

B. Average pooling layer

The average pooling layer receives n feature maps from
the previous filtering layer. The layer is the w × w × n



TABLE I
IMAGE PROCESSING FILTERS USED IN THE FILTERING LAYER

Function name Description
Ave Averaging filter with 3× 3, 5× 5 window
Max Maximum filter with 3× 3, 5× 5 window
Min Minimum filter with 3× 3, 5× 5 window
Sob Sobel filter with 3× 3, 5× 5 window
Lap Laplacian filter with 3× 3, 5× 5 window
Gau Gaussian smooth filter with 3× 3, 5× 5 window
LoG Laplacian of gaussian filter with 3× 3, 5× 5 window
Exp Expansion processing
Con Contraction processing

Gab0
Gabor filter with 7× 7, 11× 11 window

with orientation of 0 degree

Gab45
Gabor filter with 7× 7, 11× 11 window

with orientation of 45 degree

Gab90
Gabor filter with 7× 7, 11× 11 window

with orientation of 90 degree

Gab135
Gabor filter with 7× 7, 11× 11 window

with orientation of 135 degree
Add Add input two images pixel by pixel
Sub Subtract input two images pixel by pixel
Mul Multiply input two images pixel by pixel
Div Divide input two images pixel by pixel
Abs Absolute subtraction of input two images pixel by pixel

representation, which means that the w × w-sized n feature
maps are used. In the average pooling layer, an average
operation is performed over the local neighborhoods of the
w×w feature map with 2×2 window. As a result, the w×w×n
feature maps are reduced into (w/2)×(w/2)×n feature maps.

C. Transformation layer

The transformation layer receives n feature maps from the
average pooling layer and the down-sampled four original
images (red, green, and blue component of an RGB-image and
a gray scale image), which is the (w/2) × (w/2) × (n + 4)
representation. The original images are used to avoid the loss
of important information through the previous filtering layer
processing. In this layer, the output pixels are calculated by
only using the local pixels in the input feature maps. The
calculation process is defined by the feed-forward network
structure like CGP and optimized by the evolutionary algo-
rithm. In other words, the inputs of the evolved program are
the pixel values of the s×s local patches in a given pixel. The
d output images, the 1× 1× d representation, are obtained by
the processing in this layer, i.e., the n + 4 feature maps are
transformed into d feature maps, which is a (w/2)×(w/2)×d
representation. The mathematical functions displayed in Table
II are used as the function set for the evolved programs. Fig.
3 shows an example of the transformation layer.

D. Classifier layer

The classifier layer receives d feature maps, which is a h×
h × d representation. By converting 2-D feature maps to 1-
D vectors, we obtain the final feature descriptor, which has
h× h× d features for classification. We use a linear support
vector machine (SVM) as the classifier. The cost parameter c
is set to 1. For the SVM solver, we use the implementation of
multi-core LIBLINEAR (version 2.1-4) [23].

TABLE II
FUNCTION SET USED IN THE TRANSFORMATION LAYER

Function # Inputs Description
+ 2 Add two inputs
− 2 Subtract two inputs
× 2 Multiply two inputs
÷ 2 Divide two inputs
Max 4 The largest value of inputs
Min 4 The smallest value of inputs
Ave 4 The average value of inputs
log 1 Take the natural logarithm for a input
Sqrt 1 Extract a square root of a input
×2.0 1 Multiply a input by 2.0
×0.5 1 Multiply a input by 0.5
×0.1 1 Multiply a input by 0.1
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Fig. 3. Example of the transformation layer that transforms 8×8×3 feature
maps into 8× 8× 2 feature maps using the evolved program. The inputs are
the 3× 3× 3 pixel intensity values surrounding a target pixel.

E. Training protocol

The training procedure in the proposed method consists
of two-stage evolutionary optimization. In the first stage of
evolution, we evolve the filtering layer F using the architecture
of I → F → P → C, where I is the input image, F
is the filtering layer, P is the average pooling layer, and C
is the classification layer. The filtering layer generates the
w × w-sized n feature maps, where w is the size of the
original image. The average layer reduces the resolution of
the representation to (w/2) × (w/2)-sized n feature maps,
and the feature maps are used for classification. We employ
the classification accuracy for validation images as the fitness
of each individual in the first stage of evolution. At the end of
the first evolution stage, we obtain the best filter combination
Fbest that generates the w × w-sized n feature maps.

In the second stage of evolution, we evolve the transfor-
mation layer T using the architecture of Fbest → P →
T → P → C, where Fbest is the feature map generated in
the first evolution stage, T is the transformation layer, P is
the average pooling layer, and C is the classification layer.
The transformation layer receives the down-sampled evolved
feature maps Fbest (consisting of n feature maps) and the
down-sampled four original images. The transformation layer
generates the (w/2) × (w/2)-sized d feature maps, and the
average layer reduces the resolution of the representation to
(w/4) × (w/4)-sized d feature maps, which are used for
classification. We also employ the classification accuracy for
validation images as the fitness similar to the first stage



Fig. 4. Sample images from the MIT urban and nature scene dataset.

TABLE III
PARAMETER SETTINGS FOR THE PROPOSED METHOD

Parameter Value
Num. of generations (Filtering layer) 3000
Num. of generations (Transformation layer) 4000
Generation alternation model MGG [24]
Population size 50
Children size 10
Crossover rate 1.0
Ratio for uniform crossover 0.8
Mutation rate 0.1

TABLE IV
PARAMETER SETTING FOR GPIP

Parameter Value
Num. of generations 500
Generation alternation model MGG [24]
Population size 50
Children size (genotype 1) 50
Children size (genotype 2) 10
Crossover rate 1.0
Mutation rate 0.05

of evolution. In this way, we obtain the best program that
generates the (w/2)× (w/2)-sized d feature maps.

III. EXPERIMENT AND RESULTS

A. Data sets

We test the proposed method with the MIT urban and nature
scene dataset1. This dataset has eight categories (coast &
beach, forest, highway, city center, mountain, open country,
street, and tall building), and all of the images are 256× 256
pixels. In this paper, each image in the dataset is resized from
its original size to 128 × 128 pixels by linear interpolation,
and then, we randomly choose 50 images from each category
as the learning set for training SVM, 50 images from each
category as the evaluation set for evaluating the individuals in
the evolutionary optimization, and 1, 488 images as the test
set. Some image examples of this dataset are shown in Fig. 4.

B. Experiment setup

Parameter setting for the proposed method is shown in Table
III. Both the filtering layer and the transformation layer use

1http://cvcl.mit.edu/database.htm, Urban and Natural Scene Categories.

the same genetic operators, the uniform crossover and the
mutation for each gene. We implemented the filtering layer,
the transformation layer, and the average pooling layer of our
proposed method on the graphic processing unit (GPU) using
the compute unified device architecture (CUDA) 2, and hence,
each pixel is independently processed. We run our experiments
on a machine with 3GHz CPU, 32GB RAM, and NVIDIA
GeForce GTX TITAN X GPU.

For comparison, we tested the five following methods:

1) Single transformation (Proposal 1). This architecture is
I → F → P → C. In the filter layer, we adopt the
CGP-based method with 40 filtering nodes and 8 output
nodes for evolving the filtering network, i.e., the filtering
layer generates 8 feature maps. The average pooling
layer performs an average operation with 2×2 window.

2) Double transformation (Proposal 2). This architecture
is Fbest → P → T → P → C. The filtering layer
Fbest is the one obtained by the method of 1) single
transformation. The transformation layer uses 3×3×12
patches as the input and generates 16 feature maps as the
outputs. The number 12 indicates that the transformation
layer receives 8 feature maps obtained by the filtering
layer and down-sampled 4 original images. The number
of the function nodes is 50. The average pooling layer
performs the average operation with 2× 2 window.

3) A GP method that transforms feature maps generated
by random-valued filter bank into the final feature maps
using an evolved program (SST) [22]. This architecture
is I → Frand → P → T → P → C. The random
filter bank Frand is composed of 50 filters with 3 × 3
receptive fields. We generated 10 filters from each of
U(−1.0, 1.0), U(−5.0, 5.0), D(1, 5), N(1.0), N(5.0),
where U(a, b) denotes the uniform sampling of real val-
ued numbers within the [a, b] interval, D(a, b) denotes
uniform sampling of integer numbers [a, b] interval, and
N(a) denotes sampling from a normal distribution with
zero mean and the standard deviation a. As a result,
Frand generates 50 feature maps. The transformation
layer uses 3× 3× 50 pixels as the input and generates
16 outputs, i.e., the transformation layer generates 16
feature maps. The architecture of the transformation
layer is identical to that in the proposed method. The
number of the function nodes is 200.

4) A method that transforms an original image using the
filter bank and then extracts the statistical moments from
the transformed images [21] (we call this method GPIP
in this paper) . The filter bank consists of 14 well-known
image processing filters, such as the laplacian filter, and
the statistical moments consist of simple 17 statistical
values, such as standard deviation and mean value, see
[21] for details. The parameter setting for this method
is shown in Table IV. We set the number of generations
to 500 since the fitness transition was converged ade-

2https://developer.nvidia.com/cuda-zone, CUDA Zone



TABLE V
COMPARISON OF CLASSIFICATION ACCURACY.

Best Average
Proposal 1 0.786 0.759
Proposal 2 0.831 0.810
SST [22] 0.681 0.667
GPIP [21] 0.771 0.718
Gabor bank [8] 0.764 0.764

TABLE VI
CONFUSION MATRIX OF THE PROPOSED DOUBLE TRANSFORMATION

METHOD ON THE MIT URBAN AND NATURE SCENE DATASET.

(c) (f) (h) (cc) (m) (o) (s) (f)
(c) Coast 177 1 9 0 10 13 0 0
(f) Forest 0 154 0 0 9 14 0 1
(h) Highway 7 0 73 13 6 11 0 0
(cc)City center 0 2 1 152 1 2 0 0
(m) Mountain 15 6 7 3 156 37 0 0
(o) Open country 13 17 7 2 23 197 1 0
(s) Street 0 0 1 0 0 0 125 16
(f) Tall building 0 0 0 0 1 0 2 203

quately. In this method, we used a gaussian kernel with
parameter γ = 0.6 as the kernel function of SVM.

5) Gabor filtering with 8 orientation at 4 different scales,
and the output of each filter is averaged on a 4× 4 grid
to form a feature vector [8].

In order to compare the classification errors by the each
method on the test set, we employ 10-fold cross-validation.
The averaged 10 SVM test-fold accuracies are computed for
the comparison of each method.

C. Results

Table V shows the classification accuracies of each method
in five evolutionary runs. The results suggest that the proposed
method, i.e., double transformation (Proposal 2), outperforms
the rest of the methods. Comparing the double transformation
(Proposal 2) and the SST, we observe that the classification
accuracy of the double transformation is significantly better
than that of the SST (from 0.681 to 0.831). This means that
incorporating the evolved filter bank can be beneficial for
improving the classification performance as compared to the
random-value filters. Fig. 5 shows examples of a tall building
image and its transformed images by the filtering layer of
the proposed method. From these transformed images, the
distinctive features such as vertical edges seen in the tall
building are extracted by the filtering layer, which seems to
be beneficial for the classification. The double transformation
method shows better classification accuracy than that of the
single transformation method and the GPIP, which indicates
that two-stage transformation can contribute to constructing
the discriminative descriptors. In addition, the descriptor con-
structed by the proposed method outperforms the hand-crafted
features (the Gabor bank).

We tested a Wilcoxon rank sum test for comparison of
Proposal 2 and other methods. We set the significance level
at 5%. The p-value for Proposal 2 and Proposal 1 is 0.024,

Original image

(Tall building)

Transformed image 1 Transformed image 2

Fig. 5. Examples of an original image and its transformed images by the
filtering layer.

which means that Proposal 2 is statistically better regarding
accuracy than Proposal 1. The p-value for Proposal 2 and the
SST is 0.0079 and the p-value for Proposal 2 and the GPIP is
0.036, which means that Proposal 2 outperforms the SST and
the GPIP.

Table VI shows the confusion matrix of the classification
result by the proposed double transformation method for the
test images. From this confusion matrix, we can see that the
evolved descriptor can successfully classify City center, Street
and Tall building, whereas it can not classify Highway and
Mountain well.

The time costs of Proposal 1 and Proposal 2 are around
11.9 hrs and 10.8 hrs, respectively.

IV. CONCLUSION

In this paper, we have presented a hierarchical feature
construction method for image classification. The proposed
method has two-stage feature construction: (1) feature con-
struction by a combination of primitive image processing
filters, and (2) feature construction by evolved filters. We
have evaluated our method on the MIT urban and nature
scene dataset, and outperformed several GP methods and hand-
crafted descriptor. Experimental results showed that incor-
porating the filter bank in the evolution and the two-stage
evolution can be beneficial to the classification performance.

In our future work, we will evaluate our method with a more
challenging dataset.
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