GECCO 2025に論文が採択されました

国際会議 Genetic and Evolutionary Computation Conference (GECCO) 2025 (Málaga, Spain (hybrid), July 14-18, 2025) に論文(Full Paper 3件,Poster Paper 2件)が採択されました.関野さん(M2),松尾さん(M2),中川さん(M1),濱野さん(サイバーエージェント,修了生),内田助教らの研究成果です.

  • Yuta Sekino, Yohei Watanabe, Kento Uchida, and Shinichi Shirakawa: Surrogate-Assisted CMA-ES for Problems with Low Effective Dimensionality (Accepted as Full Paper)
    • Low Effective Dimensionalityな性質をもつ問題に対するサロゲート付きCMA-ESの提案
  • Ryoki Hamano, Masahiro Nomura, Shota Saito, Kento Uchida, and Shinichi Shirakawa: CatCMA with Margin: Stochastic Optimization for Continuous, Integer, and Categorical Variables, Genetic and Evolutionary Computation Conference (GECCO 2025) (Accepted as Full Paper) [arXiv]
    • 連続変数,整数変数,カテゴリ変数の同時最適化のための確率モデルベース最適化手法の提案
  • Takumi Matsuo, Kento Uchida, and Shinichi Shirakawa: Elitist Evolutionary Algorithm for Optimization on Sets of Points, Genetic and Evolutionary Computation Conference (GECCO 2025) (Accepted as Full Paper)
    • 点の集合上の最適化問題に対するエリート進化計算手法の提案
  • Haruhito Nakagawa, Yutaro Yamada, Kento Uchida, and Shinichi Shirakawa: Learning Rate Adaptation CMA-ES for Multimodal and Noisy Problems with Low Effective Dimensionality, Genetic and Evolutionary Computation Conference (GECCO 2025) (Accepted as Poster Paper)
    • Low Effective Dimensionalityな性質をもつ多峰性・ノイズ付き問題に対する学習率適応機構付きCMA-ESの提案
  • Kento Uchida, Yohei Watanabe, Ryoki Hamano, and Shinichi Shirakawa: Search Space Selection Using Constrained Mixed-Integer Optimization Method, Genetic and Evolutionary Computation Conference (GECCO 2025) (Accepted as Poster Paper)
    • 制約付き混合整数最適化手法を用いた探索空間選択の提案